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Description

Figure 1: image1 (left) and image2 (right). Both are 1024 pixels wide and 768 pixels tall.

Suppose we are given the two images above. Our objective is to estimate the fundamental matrix F that
maps points in image1 to lines in image2. To summarize, the action of the fundamental matrix is as follows.
For a given point x in image1 and letting C be the camera center of image1, F projects the ray Cx to a line
in image2. Our general approach for computing F is:

• Detect trackable features in both images.
• Match corresponding features between the two images.
• Perform outlier rejection to throw out false correspondences.
• Estimate F via linear optimization.
• Refine said estimate for F via nonlinear optimization.

1 Automatic estimation of the fundamental matrix

(a) Feature detection
As outlined, the first step is to find trackable features. But what exactly does it mean for a feature to
be trackable? To gain insight on this matter, let’s consider a hypothetical image comprised entirely of
straight lines. In this example, it is clear that points along edges are not trackable. After all the point
could be anywhere on the line segment in our feature detection window; it is impossible to pinpoint it.
In contrast, points at corners (where two lines intersect) are unambiguous. If we translate our window
by a bit, or zoom in and out, the corner is still easily picked out. Therefore, we seek corner-like features.
Of course, images in general cannot be reduced to a collection of lines. However, we can generalize this
idea of corner versus edges. What we really want are features that have bidirectional texuredness. The
mathematical description of this property is framed in terms the of gradient in pixel intensities (within
our feature detection window). The degree of bidirectional texturedness is given by the minor eigenvalue
λminor of:
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where the summation is over the window, and Ix, Iy are pixel intensity gradients in the x, y directions.
We set a threshold t such that features with λminor < t are considered untrackable. In addition, since
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our window is finite, a given feature may appear in multiple windows. For instance, if our window were
a square wdetect = 9 pixels wide, then a given feature may appear in up to w2

detect = 81 windows. But we
only want to track this feature once. Therefore, we perform nonmaximum suppression using a statistical
filter of size wsuppress. If the feature isn’t the most corner-like within its statistical window (that is, if its
eigenvalue isn’t the maximal one), then we do not count it as a new feature. For our implementation, we
picked:

• Feature detection window size: wdetect = 9px

• Statistical maximum filter window size: wsupress = 9px

• Minor eigenvalue threshold for gradient matrix: t1 = 0.00016, t2 = 0.00013

– Note that we scaled our pixel intensities to lie between 0 and 1.
– As a preliminary guideline for setting t, it is helpful to look upon the mean and standard deviation

of the minor eigenvalues.

• note: In general, we may pick different window sizes and thresholds for each image. The motivation
for using the same wdetect,1 = wdetect,2 and wsuppress,1 = wsuppress,2 is that at a glance, the two
images seem to be on roughly the same scale. However, we picked t1 < t2 because image1 appears
slightly darker than image2 (see gray-scale images). Assuming that the ratio of intensities is roughly
a constant multiplicative factor, and since the length scales are roughly equal, the gradients in image1
will be smaller. It makes sense then to scale t accordingly.

All of this gives 1394, 1399 trackable features in image1,2 (respectively). Going back to our simplified

image of straight lines, corners will not generally lie exactly on a pixel. Partly, this is due to the finite
accuracy of any image; partly this is due to noise, which will tend to round off the corners. To obtain
the best estimate for the coordinates of the feature to subpixel precision, we employ the Förstner corner
point operator [4]. Shown below are the resulting features to subpixel precision.

Figure 2: Detected corner-like features in image1 (left) and image2 (right) using the aforementioned parameters.
The boxes around the features are the detection windows of size wdetect centered on that feature.

For additional reference on feature tracking to subpixel accuracy, please refer to Shi and Föerstner [3, 4].

(b) Feature matching
To match the trackable features we found, we compare the normalized correlation coefficient (NCC)
between every possible pair of windows centered on our features (one feature from each image). Since
our features are computed to subpixel accuracy, we interpolate the window image such that the feature
being compared is at the window center. This probably won’t make a noticeable difference for larger
comparison windows. However, for smaller windows such as our choice of wcompare = 9, the boundary of
our comparison window constitute a substantial fraction of the pixels being compared. Moreover, it would
not be prudent to make the window so large that it far exceeds the length scale of the features themselves.
so this interpolation step is advised.

Finding the putative correspondences is similar to the stable marriage problem. However, due to the
symmetry of the NCC, this special case is even simpler. Ultimately, the optimal solution is to simply
match the two features with the highest NCC, followed by the two features with the second highest NCC,
and so on. We also set a threshold on the minimum NCC allowed for a match. Otherwise, if there were
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a pair of features that are not actually matched, our algorithm may pair them together anyways simply
because they have no better matches.

Sometimes, with repeated patterns (e.g. window panes) it is difficult for our algorithm to determine
which features to match. This is because it does not take the whole context into account. Therefore, we
intervene and set a maximum distance d allowed between correspondences in the two images. That being
said, there aren’t too many such repeated features in our images and the features in the foreground are
significantly displaced. Therefore, we were generous in setting d. For our implementation, we chose the
following parameters:

• Comparison window size: wcompare = 9px

• Minimum allowed normalized correlation coefficient between corresponding windows: c = 0.88

• Maximum distance allowed between correspondences: d = 500px

which gives 408 matched features.

Figure 3: Matched features. Line segments in image1 (left) point to the matched feature in image2 (right). We
subsequently discard outlier correspondences with MSAC in part(c).

(c) Outlier rejection
As can be seen in the figure above, some of the matches are fallacious. The way we determine which
correspondences are actually valid is via the MSAC algorithm. On each iteration, we randomly pick seven
correspondences xi ↔ x′i, which we presume to be inliers (i.e. true correspondences). Using these, we
compute the candidate F via the seven point algorithm. For reference, one can refer to Section 11.1.2
of Zisserman [1]. We use the resulting model of the seven point algorithm in MSAC. We will spare the
details here, but for more on MSAC, one can refer to section 4.7 of [1] for a detailed account of RANSAC.
MSAC differs from RANSAC in the way the cost function is computed and for this, one can refer to the
paper by Torr[2].

In MSAC, the maximum number of random trials before termination of the algorithm is adjusted adap-
tively via maxTrials = log(1− p)/log(1− ws). Below, we give a description of the relevant variables:

• s is the sample size used to compute the model. Here, s = 4 since we pick four point correspondences.
• w is the fraction of the number of inlier-pairs over the total number of data-pairs, which varies for

each iteration. Note that as w increases, maxTrials decreases, which is the behavior we desire.
Namely if at some point we find a model that gives a large number of inliers, then we are probably
close to the optimal MSAC solution (really we are trying to minimize the cost, but this constitutes
another sort of metric on quality of model), so we decide that it is satisfactory to run fewer total
trials.
• p is the assumed probability that at least one of the random samples of three correspondences results

in a model with no outliers. Note that if we pick a larger p, maxTrials increases, which is the
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behavior we desire. Namely if there exists a superb random sample, then we will probably want to
run more random trials to increase the likelihood of finding this treasure. For our implementation,
we picked a conservative value of p = 0.99 .

For the error tolerance, which we use to determine whether a pair of 2D-3D points is an inlier or outlier,
we used the following: given the seven-point-computed-model-fundamental-matrix, if the Sampson Error

of a given correspondence exceeds F−1m=1(α = 0.95)(σ2 = 1) = 3.8415 then the pair is considered to be an

outlier. The definition of the Sampson Error (and Correction) can be found in Section 4.26 of Zisserman
[1]. Here F−1m (α) is the inverse chi-squared cumulative distribution function with m degrees of freedom
at the probability α, and σ2 is the variance of the measurement error. m = 1 in this case because F has
codimension 1. α is the assumed probability that a pair is an inlier. α = 0.95 is typical for applications
such as ours (although for other applications, α is more appropriately assumed to be other values). Finally,

we assumed a value of σ2 = 1 . In other words, for whatever units (in this case pixels) we used to record
the feature coordinates x̃i, the variance in the measurement error is one such unit.

With this assignment of parameters, we typically find about 200 inliers out of the 408 matches. Since
MSAC is random, for the rest of the report we will focus on one particular instance in which our imple-
mentation returns the following:

• Consensus set of 209 inlier correspondences (out of 408 matches) found in 496 random trials
• The points correspondences used to compute the consensus model fundamental matrix were:

x1 x2

(298.151552982406,335.812949440606) (291.877117851226,403.482538645534)
(384.301160899456,355.708362312422) (369.047460009693,423.135323114275)
(707.671253052960,195.363234417487) (716.389991952165,263.489730505544)
(832.468414999576,396.729992895593) (848.295214043126,466.773064896454)
(505.302763025737,69.8886492759519) (59.4487907340367,164.844345295784)
(751.289169607856,625.238346333362) (441.489305894843,690.506001096283)
(487.420191364419,429.181841050455) (476.432500124758,495.719461769196)

where the origin is at the top left of the image, the first coordinate is along the rightward
axis, and the second coordinate is along the downward axis. This gives resulting seven point
algorithm solution:

FMSAC =

 2.11567237784636× 10−8 1.43593286239337× 10−6 −0.000669013803210115
−3.66079709065288× 10−7 1.15103565797012× 10−7 −0.0111196089973112

0.0003450241014739 0.0103180688946042 0.999884655911233



Figure 4: Matched features with outlier correspondences thrown out via MSAC.
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(d) Linear estimation
Once we have a set of inlier correspondences from running MSAC, we want to refine our estimate for F .
Some improvements can be made because while MSAC fits the model perfectly to the random sample of
seven correspondences, it does not take into account the other inlier points when computing F . Therefore,
it is in our interest to modify the model such that F may not fit any of the points perfectly, but on the
whole minimizes the reprojection error. Before we get there though, it is useful to first compute the model
that minimizes the algebraic error ‖Af‖. Here A = [x′

i
>⊗x>i ] is the design matrix and f ≡ vec(F ) such

that constraining a given row of Af to zero corresponds to the condition that
∑

j=1,2,3(x′>
i Fxi)j = 0.

To this end, we use the Direct Linear Transformation algorithm, with the intention of using its output
to seed the nonlinear optimization; except for some pathological cases, this will place us in the basin of
the global optimum for the reprojection error. The DLT algorithm for F is given in section 11.3.1 of
Zisserman [1]. With our set of inlier correspondences, the resulting DLT fundamental matrix is:

FDLT =

−1.85548763329073× 10−8 −1.40819946655058× 10−6 0.000653353672989866
3.8501544574324× 10−7 −1.95425036753899× 10−7 0.010935091433029
−0.000335902859635542 −0.0100866092086065 −0.999889066039879


(e) Nonlinear estimation

We now use FDLT to seed our Levenberg Marquardt algorithm. The parameter vector that is adjusted

at each iteration is v̂ = [p̂′
>
, X̂1, Ŷ1, Ẑ1, X̂2, Ŷ2, Ẑ2..., X̂n, Ŷn, Ẑn]>. Here, p̂′ (eleven degrees of freedom) is

the parameterization of overdetermined camera projection matrix P̂ ′ for image2 such that with canonical
P = [I|0] for image1, F = [e′]×P

′P † (e′ is the epipole in image2). [X̂i, Ŷi, Ẑi]
> is the parameterization

of the 3D point that projects to the ith inlier pair, adjusted at each step such that together with p̂′, the
reprojection error is minimized.

We initialize p̂′ to the decomposition of FDLT under the canonical camera assumption. Using {P ,P ′DLT }canonical,
we initialize [X̂i, Ŷi, Ẑi]

> to the triangulated, optimally-corrected features in the images. Because in the
homogeneous representation points at infinity have zero as the last coordinate, we specifically avoid the
usual inhomogenous parameterization. Rather, for both p̂′ and X̂i, we use the parameterization as out-
lined in Appendix 6.9.2 of Zisserman [1]. At each step, the LM algorithm modifies the parameter vector
such as to minimize the reprojection error (see section 4.2.3 of Zisserman [1]).

For n = 209 inlier correspondences, the Jacobian of p̂′ 7→ [x̃1, ỹ1, ..., x̃n, ỹn, x̃
′
1, ỹ
′
1, ..., x̃

′
n, ỹ
′
n]> is 836× 638,

where [x̃1, ỹi]
> and [x̃′1, ỹ

′
i]
> are the inhomogeneous projected X̂i in the respective images (Not the

measured points xi,x
′
i. Our notation is somewhat degenerate). As can be seen, the situation quickly gets

out of hand due to the large amount of memory required. Fortunately, the Jacobian is sparse such that
it is not necessary to store the entire matrix. Our sparse implementation follows exactly that outlined in
Appendix 6.5 of Zisserman with identity covariances [1]. We normalized the data in the same way as is
done in the DLT algorithm; so the covariances will be transformed accordingly, but this normalization is
for numerical stability and may not be necessary in all cases. Our resulting FLM upon termination is:

FLM =

−1.89679786464535× 10−8 −1.44899815802076× 10−6 0.000663529145278562
4.04526679133871× 10−7 −2.12280456942332× 10−7 0.0109873334793566
−0.000343401630875977 −0.0101267828847284 −0.999888078023487


The nonlinear optimization converges to our termination criteria of costprevious/costcurrent > 0.999999 in
three steps with cost sequence:

iteration cost
0 80.03892
1 64.40920
2 64.40912
3 64.40912
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Figure 5: Cost (Reprojection Error) as a function of the number of refinements made to F . Refinement zero
corresponds to the cost at initialization. Our termination criteria is costprevious/costcurrent > 0.999999.

(f) Point to line mapping

As aforementioned, F maps point x in image1 to line `′ in image2 by projecting the ray Cx onto image2.
Therefore, `′ = Fx must pass through the corresponding feature x′ in image2. To check the quality of
FLM , it suffices to verify that this behavior holds. Below, we demonstrate that our final estimate for the
fundamental matrix is satisfactory.

Figure 6: Three points x1,2,3 in image1 and the corresponding epipolar lines `′1,2,3 = FLMxi in image2. As it

should, `′i passes through x′i (the feature corresponding to xi) in image2.
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