Visualization of Dataflow Analyses

Catherine Chen

Kevin Lim

Myron Liu

University of California San Diego

hoc028@eng.ucsd.edu

Abstract

We demonstrate how dataflow analysis can be visually repre-
sented in the context of visual programming languages such
as Google’s Blockly, specifically for the analyses: reaching
definitions and constant propagation. Our dataflow engine
is such that the user can specify their own arbitrary analy-
sis by defining new flow-functions. The goal is that such an
interactive visual representation will be helpful for a young
computer scientist learning about dataflow analysis for the
first time, and encourage more direct experimentation with
the idea of dataflow analysis.

Keywords Visual Programming Languages, Dataflow Anal-
ysis, Education

1. Introduction

Graphical representation utilizes our complex visual system
to make programs easier to understand and learn. Visual pro-
gramming languages utilizes this ability and can improve
students’ ability to learn about complex programming con-
cepts such as dataflow analysis and compiler optimization.
Similar work has been done—as listed in the Related Works
section—in other domains, and we will specifically be im-
plementing and reproducing those ideas for compiler con-
cepts. Further, interactivity allows a student to experiment
and come up with scenarios and problems of their own, and
verify the solution against our display.

With this goal in mind, we created a visual programming
language dataflow visualization so that a young computer
scientist being introduced to dataflow analysis, can experi-
ment with the concept in a more direct manner then pen-and-
paper. The technology framework we have chosen to test this
idea is Blockly, a javascript visual programming framework.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CSE 231 Spring 2015, UC San Diego.

Copyright © 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

kyungyullim@ucsd.edu

myronyliu@gmail.com

2. Related Works

The effects and theory for visual programming languages
have been explored by Green et al. and Myers [5][7]. There
are many previous experiments that apply this insight such
as Scratch, SNAP, or App inventors [1][2][3]. Evaluation of
such systems have been done by others as well [4][6].

3. Implementation
3.1 dataflow representation

Our dataflow is represented internally as a dictionary with
variables as keys and dataflow as values. For instance, in
reaching definitions, our dataflow at the input (or output) of
a given block in the program might be:

{z:[1,2,4],y:[25], 2 : [5,11]}

signifying that the value for may come from blocks 1, 2, or
4. In contrast constant propagation is represented as follows:

{z : 5,y : null, z : superConstant}

As can be seen, the representation for the dictionary values
may change depending on what is most suitable for the
particular analysis. For user-defined analyses, the dataflow
can take on any form so long as the corresponding flow-
functions (which take in the dataflow as input) are consistent.

The set of analyses that our dataflow-engine accepts is
also maintained in a dictionary: keyed on the name of each
analysis. Suppose we have specified analyses reaching def-
initions and constant propagation. Then our dictionary of
analyses would be:

reachingDefs : { flowFunc : function(block){...},
topFunc : function(workspace){...},

bottomFunc : function(workspace){...

constantProp : { flowFunc : function(block){...},

topFunc : function(workspace){...},

1

bottomFunc” : function(workspace){...}}

Here, flowFunc takes in a block and computes the outgo-
ing dataflow. topFunc and bottomFunc take in all the blocks
in the code (hence the argument workspace) and compute

the lattice top/bottom respectively; these are defined so that
in the case that flowFunc does not know how to handle a
certain type of block, the outgoing dataflow for that block
can always safely be set to topFunc(workspace). Typically
though, one shies away from reverting to the latticeTop. Re-
verting to a sub-lattice top usually suffices. For example,
consider reaching definitions with blocks 1,2,3 and vari-
ables z,y, z. If «’s reaching definition becomes indetermi-
nate at some point, it is far better to simply expand z’s
dataflow to « : [1,2,3] than setting the entire dataflow to
{z : 1,2,3],y : [1,2,3],2z : [1,2,3]}. This more refined
behavior is handled by flowFunc.

In our existing implementation for reaching definitions
and constant propagation, we always begin the analysis at
the lattice bottom. Note that bottom in this case is repre-
sented by the empty dictionary {}; which is not the same as
{z : [allBlocks],y : [allBlocks], z : [allBlocks], ...} and
{z : null,y : null,z : null,...}: the respective tops for
reaching definitions and constant propagation.

Our dataflow engine is separated into two parts. The first
maintains a worklist of blocks to be processed, dynamically
popping and adding elements as dictated by the worklist
algorithm. The second computes outgoing dataflow given
a block’s incoming dataflow. This modular structure makes
it easier to define custom analyses. All that is needed is
an addition to the dictionary of analyses and corresponding
specifications for flowFunc, topFunc, bottomFunc.

Once the dataflow for the entire program is generated, the
results are displayed to the user. Each outgoing dataflow gets
drawn off to the side of the block from whence it came. In
addition, we label each statement block with its block ID,
so that the correspondence between outgoing dataflow and
block is completely unambiguous.

3.2 Worklist

The worklist algorithm bears some explanation. The iterative
worklist algorithm traverses along a lattice as new informa-
tion is found about the analysis. In order to create the initial
worklist, the program’s control flow graph is created, then
traversed in depth-first post-order to push the blocks onto the
worklist. Then, we iteratively run the flow functions until a
fixed point for the whole program is reached.

Usually for a sequential block, a single run-through is
enough and the analysis of it won’t change. However, if in-
side a while loop we might possibly have to run the sub-
blocks again. This check is done by whether or not a block’s
outgoing information has changed after running its flow
function. If it has not changed, then we proceed down the
worklist. However, if it has, then there is a chance that re-
ceiving block might have to be iteratively run again. There-
fore in the case of a while loop, if it’s output connection
has changed, we merge it with the input connection of the
while loop and put the first statement of the while loop back
on the worklist, simulating an iteration until a fixed point is
reached.

We are guaranteed termination here as we intentionally
choose analyses that have finite lattices with monotonic flow
functions and so we must reach the least fixed point.

3.3 Visualization

The visualization is handled mostly through blockly as a
Scalable Vector Graphics XML description shown on an
HTML page. So far, all information we add is a svg text ele-
ment that either shows the block’s ID, or the output dataflow
at that point. The outgoing dataflow is indented to match the
structure of the program to allow easier matching between
the information and blocks.

4. Results

We ran our dataflow analysis on a number of test cases
and verified them against manually calculated analysis re-
sults. The analysis supports control statements such as while
and if/else blocks(Figure 1), as well as nested value eval-
vations(Figure 2). The results are displayed alongside the
blocks and further clarified by displaying the ID of the block
it belongs to.

One improvement that can be made is to draw a horizon-
tal arrow between the outgoing dataflow summary to the bot-
tom of the block with which it corresponds. This is actually
something that we tried to implement, but for reasons that
aren’t particularly interesting, the result wasn’t visually ap-
pealing. Usability improvements will be discussed further in
the next section.

Additionally, our implementation for constant propaga-
tion only handles conditionals i f(x == expression) and
if(x! = expression) where x is a variable and expression
is some arbitrary expression that evaluates to a number or
string (including expressions that involve variables them-
selves). This restriction limits the precision of the analysis.
At the least, for constant propagation, we would like to in-
clude other boolean comparison operators such as <, <, >
, >, which should be relatively straightforward to implement
in the future. A more interesting example appears in figure 3
where the conditional i f (x x 6 == 42) is an implicit expres-
sion. This sort of case is simple enough that it also begs to
be handled. Nonetheless, the level of complexity we permit
is largely subjective. All that is required is that unhandled
conditionals are handled gracefully; in our case, we just de-
fault all referenced variables (in the conditional statement)
to sub-dataflow null: the conservative option.

5. Future Work and Discussion

Although the results of the dataflow-analysis are displayed in
an unambiguous manner, the fact that it is text-based leaves
something to be desired. We wish to expand on this by im-
proving usability through further visualizations, by permit-
ting the ability to transform the program and see the analysis
change interactively, and finally by testing the program and
receiving user feedback.

set m to a 1: {"reaching_definitions™:{"x":["1"]}."constant_propagation":{"x":5}}

repeat (R | 'E)

[+ [¢] |é\ if
@8 g

do | set @ to
—

13: {"reaching_definitions":{"x":["1","19"],"y":["13"]},"constant_propagation":{"x":42,"y":53}}

else (st EEIto | GHD
:et [x - NI 6 | 19: {'reaching_definition:
ns' 1"

17: {"reaching_definitions":{"x":["1","19"],"y":["17"]}."constant_propagation":{"x":null,"y":11}}

X'6,"y" 113}

7: {"reaching_defini "I ull,"y":null}}
3: {"reaching_definitions":{"x":["1","19"],"y": ["13" "17"]},"constant, propagatlon :(null,"y":null}}
set C3 to 21: {"reaching_definitions":{"x":["21"]."y":["13","17"]}."constant_propagation":{"x":3."y":null}}
. . . .
Figure 1. Dataflow analysis run and displayed on a generic program.
set £XD to 1:{reaching_definitions™{'"["1"]} ‘constant_propagation”{'"5}}
set (B to | (o] createtextwith | (0] create textwith | ¢¢ (&=
{10910 - |
1 31 Final Project [/
| lengthof || ¢ CEED »
“«@»
| (2 create text with «g»
=2 3 {reaching_definitions™(’"["1"1"y"T"3"], "constant_propagation”{""5,"y""CSE 231 Final Fraject 6/0/15))

Figure 2. An example of constant propagation with heavily nested blocks.

1: {"constant_propagation":{"x":7}}

<t | g

\iet %) to 13: {"constant_propagation”:{"x":6,"y":null}}

setf@to | €D
:et EBt [B

-

9: {"constant_propagation":{"x":null,"y":null}}

15: {"constant_propagation”:{"x":null,"y":11}}

17: {"constant_| propagatlon" {"x":6,"y":11}}
3: {"constant_propagation":{"x":6,"y" null}}

19: {"constant_propagation":{"x":7,"y":null}}

Figure 3. One limitation of our constant propagation analysis is that we do not currently handle implicit conditionals, such
that we lose precision. As can be seen for the outgoing dataflows for block 9 and block 15, x maps to null, which is excessively
conservative.

(~ constant propagation: x:{5}

setf@@tc | B
repeat (LICN' (‘ro3 €D '©2

.mm @m::

set to

S

reaching definitions: x{1

else | set to

:et €8 to

set £ to B'

m 1 - constant propagation: x:{42}
. ylsuperconstant}
- reaching definitions: x{1.19}
L w17}
L. J
[+ constant propagation: x:{sup]
+ reaching definitions: x{1.19] ...
+ COnstant propagation: X:{supercons
+_reaching definitions: x{1.19} ...
T X
+
+
+ _reaching definitions: x{1.19} ...

Figure 4. Mockup for expandable and collapsible information to reduce visual clutter.

5.1 Usability improvements

The current version is still far from our original mockups,
and can be considered incomplete. Since a program can grow
arbitrarily large, we cannot hope to display every dataflow
information in a simple dictionary as we do now. Adding
collapsible tabs per analysis is the first idea towards solving
this issue(Figure 4).

The control flow graph of the program we construct for
the analysis is implicit and only used internally. This rep-
resentation can be expressed visually as in Figure 5, provid-
ing further visualization points to show our dataflow analysis
and also helping the student learn the concept of control flow
graphs.

To stay true to the spirit of visualizations, we wish to
extend our information display from text-based to graphical.
Further, the displayed information is static and cannot be
interacted with whatsoever. Figure 6 shows an example of a
block’s dataflow information being visualized through edges
rather than text interactively. Other interactive ideas include
rerunning the analysis automatically based on events such as
block creations or connection changes.

As aforementioned, one can specify their own dataflow
analysis by introducing a corresponding dataflow format and
flowfunction without worrying about issues like updating
the worklist (which is automated). Currently, the only way
to do this is by accessing the source. However, we hope to
implement a fext field in which the user can type their own
data-formats and flow-functions. Blockly will then evaluate
the contents, to run the custom analysis.

These mockups are still preliminary and would require
further exploration.

5.2 Evaluation

Due to time constraints, we were unable to gather feedback
and evaluate the performance of our application.

We plan to measure speed and engagement of our ap-
plication [6] using the typical experiment framework in
learning sciences by assessing students’ performance in our
learning environment against a control group that is given
a more traditional instruction. Our hypothesis is that inter-
mediate visual information makes students faster and more
engaged about dataflow analysis and compiler optimization.
A worksheet with identical problems will compare students
who learn about dataflow analysis through our visual pro-
gramming environment (the experiment group) and students
who learn through a traditional lecture slide in comparable
amount of time (the control group). The significance of our
results can be measured with a student’s t-test.

5.3 Interactive Optimization

With the dataflow analysis done, we are poised to execute
a few optimizations across the program. Ideally this would
be an interactive experience for the user as well and they
can step through the optimization, observing which dataflow
information allows which optimizations.

6. Conclusion

We presented a dataflow analysis engine for visual program-
ming language that also displays its analysis results visu-
ally. Our goal of the project was to create an educational
experience that made it clearer what dataflow analysis is and
how it’s performed. We hope the automatic dataflow anal-
ysis is helpful to users who try our visualization. There is
still more work to be done, as currently the dataflow anal-
ysis simply gives the answer, and doesn’t show how the in-

Constructing the Visualization

for the Control Flow Graph

exit

Figure 5. Control flow graph displaying additional blocks where control flow changes happen.

An Example of how Constant Propagation will be Represented

Adjacent upstream statements

Selected statement to analyze

intersection={empty} t——

X

Figure 6. A selected node has its constant propagation information visualized by edges pointing to source blocks.

formation was constructed, which is vital to the educational
experience. However, being able to modify the program and
interactively see how such modifications change the analysis
can be a powerful learning tool for a student to interact with.

Throughout this quarter we learned how to perform
dataflow analysis at a high level. It is easy enough to step
through code on paper, relying on human intuition to fill in
the details. However, at a low-level, an abstract notion of
dataflow analysis no longer suffices. This project gave us
an opportunity apply our fuzzy concepts in a concrete set-
ting. Having just barely scratched the surface, we now have
a newfound appreciation for the discipline that is program-
ming languages.

Acknowledgments

We would like to thank Dr. Sorin Lerner and Alan Leung for
their guidance and the CSE department for supporting this
project.

References

[1] App inventor. http://appinventor.mit.edu/.
[2] Scratch. http://scratch.mit.edu/.

[3] Snap. https://snap.berkeley.edu/.

[4] Sarah Esper, Stephen R Foster, and William G Griswold. Code-
spells: embodying the metaphor of wizardry for programming.
In Proceedings of the 18th ACM conference on Innovation
and technology in computer science education, pages 249-254.
ACM, 2013.

Thomas R. G. Green and Marian Petre. Usability analy-
sis of visual programming environments: a ’cognitive dimen-
sions’ framework. Journal of Visual Languages & Computing,
7(2):131-174, 1996.

Sorin Lerner, Stephen R Foster, and William G Griswold. Poly-
morphic blocks: Formalism-inspired ui for structured connec-
tors. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pages 3063-3072.
ACM, 2015.

Brad A Myers. Taxonomies of visual programming and pro-
gram visualization. Journal of Visual Languages & Computing,
1(1):97-123, 1990.

[5

—

[6

—_

[7

—

